102 research outputs found

    A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human infants

    Get PDF
    We have established a population average surface based atlas of human cerebral cortex at term gestation and used it to compare infant and adult cortical shape characteristics. Accurate cortical surface reconstructions for each hemisphere of 12 healthy term gestation infants were generated from structural magnetic resonance imaging data using a novel segmentation algorithm. Each surface was inflated, flattened, mapped to a standard spherical configuration, and registered to a target atlas sphere that reflected shape characteristics of all 24 contributing hemispheres using landmark constrained surface registration. Population average maps of sulcal depth, depth variability, 3-dimensional positional variability, and hemispheric depth asymmetry were generated and compared to previously established maps of adult cortex. We found that cortical structure in term infants is similar to the adult in many respects, including the pattern of individual variability and the presence of statistically significant structural asymmetries in lateral temporal cortex, including the planum temporale and superior temporal sulcus. These results indicate that several features of cortical shape are minimally influenced by the postnatal environment

    Multi-Material Processing By Lens

    Get PDF
    During the past few years, solid freeform fabrication has evolved into direct fabrication of metallic components using computer aided design (CAD) solid models. [1-4] Laser Engineered Net Shaping (LENSâ„¢) is one such technique [5-7] being developed at Sandia to fabricate high strength, near net shape metallic components. In the past two years a variety of components have been fabricated using LENSâ„¢ for applications ranging from prototype parts to injection mold tooling. [8] To advance direct fabrication capabilities, a process must be able to accommodate a wide range ofmaterials, including alloys and composites. This is important for tailoring certain physical properties critical to component performance. Examples include graded deposition for matching coefficient ofthermal expansion between dissimilar materials, layered fabrication for novel mechanical properties, and new alloy design where elemental constituents and/or alloys are blended to create new materials. In this paper, we will discuss the development ofprecise powder feeding capabilities for the LENSTM process to fabricate graded or layered material parts. We also present preliminary results from chemical and microstructural analysis.Mechanical Engineerin

    Informatics and data mining tools and strategies for the Human Connectome Project

    Get PDF
    The Human Connectome Project (HCP) is a major endeavor that will acquire and analyze connectivity data plus other neuroimaging, behavioral, and genetic data from 1,200 healthy adults. It will serve as a key resource for the neuroscience research community, enabling discoveries of how the brain is wired and how it functions in different individuals. To fulfill its potential, the HCP consortium is developing an informatics platform that will handle: 1) storage of primary and processed data, 2) systematic processing and analysis of the data, 3) open access data sharing, and 4) mining and exploration of the data. This informatics platform will include two primary components. ConnectomeDB will provide database services for storing and distributing the data, as well as data analysis pipelines. Connectome Workbench will provide visualization and exploration capabilities. The platform will be based on standard data formats and provide an open set of application programming interfaces (APIs) that will facilitate broad utilization of the data and integration of HCP services into a variety of external applications. Primary and processed data generated by the HCP will be openly shared with the scientific community, and the informatics platform will be available under an open source license. This paper describes the HCP informatics platform as currently envisioned and places it into the context of the overall HCP vision and agenda

    Role of lattice distortion and A site cation in the phase transitions of methylammonium lead halide perovskites

    Get PDF
    The rapid increase in power conversion efficiencies of photovoltaic devices incorporating lead halide perovskites has resulted in intense interest in the cause of their excellent properties. In the present paper, resonant ultrasound spectroscopy has been used to determine the elastic and anelastic properties of CH3NH3PbX3(where X=Cl, Br, or I) and CD3ND3PbI3 perovskites in the 5–380 K temperature range. This is coupled with differential scanning calorimetry, variable temperature neutron powder diffraction, and variable temperature photoluminescence studies to provide insights into the underlying processes and structural instabilities in the crystal structure. By comparing measurements on CH3NH3PbI3 with the deuterated equivalent, it has been possible to distinguish processes which are related to the hydrogen bonding between the methylammonium cation and the perovskite framework. We observe that replacing hydrogen with deuterium has a significant impact on both the elastic and photophysical properties, which shows that hydrogen bonding plays a crucial role in the material performance. Temperature-dependent photoluminescence studies show that the light emission is unaffected by the tetragonal-orthorhombic phase transition, but a blueshift in the emission and a steep increase in photoluminescence quantum yield are seen at temperatures below 150 K. Finally, observations of peaks in acoustic loss occurring in CH3NH3PbCl3 have revealed freezing processes in the vicinity of ∼150−170K, with activation energies in the range of 300 to 650 meV. These processes are attributed to freezing of the motion of methylammonium cations, and could explain the changes in photoluminescence seen in CH3NH3PbI3 at the same temperature. © 2018 American Physical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at: https://doi.org/10.1103/PhysRevMaterials.2.06540

    Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy

    Get PDF
    This work was supported by the Engineering and Physical Sciences Research Council (grant codes EP/M506631/1, EP/ K015540/01, EP/K022237/1 and EP/M025330/1). IDWS and JTSI acknowledge Royal Society Wolfson research merit awards.The field of organo-lead halide perovskite solar cells has been rapidly growing since their discovery in 2009. State of the art devices are now achieving efficiencies comparable to much older technologies like silicon, while utilising simple manufacturing processes and starting materials. A key parameter to consider when optimising solar cell devices or when designing new materials is the position and effects of the energy levels in the materials. We present here a comprehensive study of the energy levels present in a common structure of perovskite solar cell using an advanced macroscopic Kelvin probe and UV air photoemission setup. By constructing a detailed map of the energy levels in the system we are able to predict the importance of each layer to the open circuit voltage of the solar cell, which we then back up through measurements of the surface photovoltage of the cell under white illumination. Our results demonstrate the effectiveness of air photoemission and Kelvin probe contact potential difference measurements as a method of identifying the factors contributing to the open circuit voltage in a solar cell, as well as being an excellent way of probing the physics of new materials.Publisher PDFPeer reviewe
    • …
    corecore